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Abstract—Stochastic computing (SC) is an unconventional
computing paradigm based on digital computation on stochastic
bit streams. It is promising for many applications, one of
which is the digital filter design. A previous work proposed an
area-efficient SC-based finite impulse response (FIR) filter by
optimizing the stochastic number generators (SNGs), which are
used to produce stochastic bit streams of the desired probabilities.
An SNG is composed of a random number source (RNS) and a
probability conversion circuit (PCC). The previous technique is
based on reducing the total number of RNSs within all the SNGs.
In this work, we exploit two techniques that reduce the area of
PCCs to further reduce the area of the SC-based FIR filters. They
optimize the PCCs for variable and constant input probabilities,
respectively. With the PCC area significantly reduced, it allows
us to add few RNSs back to reduce the computation error due to
correlation. Our experimental results showed that our proposed
design can further improve both the area and computation
accuracy of stochastic implementations of FIR filters.

I. INTRODUCTION

Stochastic computing (SC), as an unconventional computing
paradigm, was proposed in 1960s. It has attracted much
attention in recent years [1]. It converts binary numbers into
stochastic bit streams and operates on these streams with
conventional digital circuits. A stochastic bit stream encodes a
value equal to the probability of a 1 in the stream. For example,
the bit streams 11010111 and 11001010 encode the values 6/8
and 4/8, respectively. By ANDing these two streams bitwise,
we obtain an output bit stream 11000010, which encodes
the value 3/8. This example shows one attractive feature of
SC: we can perform multiplication by a simple AND gate.
Indeed, SC enables realizing many other complex arithmetic
functions by very simple circuits. Besides, SC has several
other advantages such as strong tolerance to bit flip errors
and allowing multiple precisions with the same circuit.

Due to its low area cost, SC has been applied to several ap-
plications, such as digital filter [2], [3], image processing [4],
decoding of modern error-correction code [5], and machine
learning [6]. In this work, we focus on SC-based finite impulse
response (FIR) filter.

In order to generate a stochastic bit stream from a binary
number, stochastic number generator (SNG) is used. It consists
of a random number source (RNS) and a probability conversion
circuit (PCC) [7]. An RNS can be viewed as a set of k
unbiased random bits, where k determines the precision of the
generated probability. A typical RNS is a linear feedback shift
register (LFSR). A PCC takes k unbiased random bits provided
by an RNS and k target bits ck−1, ck−2, . . . , c0 as inputs. It
produces an output bit stream of probability C/2k, where C

equals the binary number (ck−1ck−2 . . . c0)2. A typical PCC
is a comparator.

Chang and Parhi proposed a general SC-based architecture
to implement FIR filters [2]. However, Ichihara et al. found
that the SNGs occupy most of the area of that design [3]. To re-
duce the area, they proposed an RNS sharing technique, which
reduces the total number of RNSs in the filter to 1. However,
as showed in their experimental results, now PCCs occupy
most of the area. In this work, we propose two techniques to
further reduce the area of the PCCs. They optimize the PCCs
for variable and constant input probabilities, respectively. With
the PCC area significantly reduced, it allows us to add few
RNSs back to reduce the computation error due to correlation.
Our experimental results showed that our proposed design can
further improve both the area and computation accuracy of
stochastic implementations of FIR filters.

The rest of the paper is organized as follows. Section II in-
troduces the related works on SC-based FIR filters. Section III
presents the proposed new SC filter architecture using two
novel techniques to reduce the PCC area. Section IV shows
the experimental results. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce correlation in SC. Then,
we introduce a general architecture of SC-based FIR filters. Fi-
nally, we present a previously proposed improved architecture
with a single RNS.

A. Correlation in Stochastic Computing

Since stochastic bit streams are generated by SNGs, if the
RNSs in the SNGs are correlated, the produced bit streams
will also be correlated. Such correlation may result in a large
error in the computing process. For example, if the same bit
stream 11001100 is fed into the two inputs of an AND gate,
the output will be 11001100 as well. In this case, since the two
input bit streams to the AND gate are maximally correlated,
the output value is not the product of the two input values.
Thus, mitigating the correlation is critical for SC. The detailed
analysis of correlation in SC is introduced in [8].

B. A General Architecture of SC-Based FIR Filter

An nth-order FIR filter performs the following computation

y =

n∑
i=0
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Figure 1: SC-based 1st-order FIR filter: (a) a general architecture proposed in [2]; (b) an improved architecture with a single RNS proposed
in [3]; (c) a detailed illustration of the circular shift (CS) module used in Fig. 1(b) [3].

where y is the filter output of the current clock cycle, hi

(0 ≤ i ≤ n) is the ith filter coefficient, and xi (0 ≤ i ≤ n)
is the input signal i clock cycles before. Traditional binary
implementation of an FIR filter uses binary multipliers and
adders, which are costly in area and power.

Chang and Parhi proposed a general SC-based architecture
to implement FIR filters [2]. It consists of RNSs, PCCs,
XOR gates, MUXs, and a counter (CNT). Fig. 1(a) shows
the architecture of a 1st-order FIR filter with function as
y = h0x0 + h1x1. LFSRs are used as the RNSs and com-
parators are used as the PCCs. The final counter is used to
convert a stochastic bit stream back to a binary number.

The input bit streams x0 and x1, the intermediate bit streams
v0 and v1, and the output bit stream y are in the bipolar format.
In such a format, a value p in the range [−1, 1] is represented
by a stochastic bit stream with probability (1 + p)/2 to be
a 1. The signals si0 and si1 denote the sign of h0 and h1,
respectively. That is, for j = 0, 1, sij is 0 if hj ≥ 0 and 1
otherwise. Thus, if hj (j = 0, 1) is negative, the output of the
jth XOR gate is the negation of its input and in biploar format,
we have vj = −xj . Thus, for i = 0, 1, we can represent vi as

vi = xi · sgn(hi), (1)

where sgn(x) is defined as follows

sgn(x) =

{
1, x ≥ 0

−1, x < 0
.

The MUX in the circuit realizes a weighted sum. Its output
value is y = (1−s)v0+sv1, where s is the probability encoded
by the bit stream for the select input of the MUX. In the
design, the probability of s is fixed as |h1|

|h0|+|h1| . Thus, the

output y = |h0|v0+|h1|v1

|h0|+|h1| . By Eq. (1), the final output is

y =
h0x0 + h1x1

|h0|+ |h1|
.

Thus, the design shown in Fig. 1(a) realizes a scaled version of
the original filter function. For a general nth-order FIR filter,
the stochastic implementation is similar to the one shown in
Fig. 1(a). The only difference is that the single MUX in the
figure is replaced by a MUX tree.

C. An Improved Architecture of SC-Based FIR Filter with a
Single RNS

In the design shown in Fig. 1(a), three RNSs are used.
However, the data inputs of a MUX can be correlated, since at
each clock cycle, the bit of only one data input is selected as
the output. Based on this observation, Ichihara et al. proposed
an improved SC-based FIR architecture with a single RNS [3].
We call it single-RNS architecture for short. For the same 1st-
order FIR filter in Fig. 1(a), the single-RNS architecture is
shown in Fig. 1(b). Notice that the bit streams v0 and v1 are
generated from the same RNS. However, the bit streams for
the data inputs of the MUX should be independent to that for
the select input to avoid the correlation-induced error. Thus,
ideally, the bit stream for the select input and those for the
data inputs should be generated by two different RNSs. To
further reduce the number of RNSs to 1, the authors proposed
to do a circular shift (as shown in Fig 1(c)) on the outputs
of the RNS for the bit stream for the data inputs and use that
shifted version as the RNS for the bit stream for the select
input. This reduces the error due to correlation.

For a general nth-order filter, the final output bit stream is
produced by a MUX tree. Since the structure of the MUX tree
is not unique and different MUX trees could lead to different
correlation-induced error, an algorithm was proposed in [3] to
design the optimal MUX tree with a low correlation-induced
error. Table I shows the area comparison between the general
architecture and the single-RNS architecture for a 31st-order
FIR filter [3]. As it shows, the number of RNSs is reduced
from 63 to 1 and the area is reduced from 4, 837 to 1, 506.

TABLE I: Area breakdown of the general architecture and the single-
RNS architecture of a 31st-order FIR filter with 8-bit precision [3].

general arch. single-RNS arch.
area(µm2) # area(µm2) % # area(µm2) %

RNS 53.73 63 3,385 70 1 53.73 3.6
PCC 20.22 63 1,274 26.4 63 1,274 84.6
XOR 1.596 32 51.07 1.1 32 51.07 3.4
MUX 1.862 31 57.72 1.2 31 57.72 3.9
CNT 69.69 1 69.69 1.5 1 69.69 4.7
Total 4,837 100 1,506 100



III. THE PROPOSED ARCHITECTURE FOR SC-BASED FIR

As we discussed in Section II-C, the single-RNS architec-
ture reduces the area of the RNSs. However, the other part of
the circuit is not changed. Specially, the area of the PCCs
is not changed and it becomes the dominating part of the
total area of the SC-based FIR filter. For example, as shown
in Table I, it takes 84.6% of the total area for a 31st-order
FIR filter. In order to further reduce the area of the filter,
we introduce a new architecture in this section. As shown in
Fig. 1(b), those input stochastic bit streams produced by the
SNGs can be divided into two groups. The first group consists
of those bit streams encoding the variable input signal xi’s.
The second group consists of those bit streams fed into the
select inputs of the MUXs. For a fixed filter, the probabilities
of these bit streams are constant. Our proposed architecture
involves two novel strategies. The first strategy optimizes the
PCCs for those bit streams of variable probabilities, while the
second strategy optimizes the PCCs for those bit streams of
constant probabilities. We will present these two strategies in
Sections III-A and III-B, respectively. Then, we will present
the proposed architecture in Section III-C.

A. Optimizing PCCs for Variable Probabilities

We use a technique proposed in our previous work [9]
to optimize the PCCs for generating bit streams of variable
probabilities. It is based on a type of PCC called weighted
binary generator (WBG) [10].

Fig. 2(a) shows a WBG with precision k = 4. It takes as
inputs 4 unbiased random bits r3, . . . , r0 of probability 0.5 to
be a 1 and 4 target bits c3, . . . , c0. The set of AND gates in
the first level is referred to as WBG Part 1 and the remaining
part of the WBG is referred to as WBG Part 2 [9]. WBG Part
1 produces signals w3, . . . , w0, where wi (0 ≤ i ≤ 3) has the
probability of 1/24−i to be a 1. WBG Part 2 takes w3, . . . w0

and c3, . . . , c0 as inputs and produces a stochastic bit stream
with the probability equal to

P (w3)c3 + P (w2)c2 + P (w1)c1 + P (w0)c0 =
(c3c2c1c0)2

24
,

which is the desired probability.
To reduce the area of PCCs, we propose to replace the com-

parators in Fig. 1(b) for generating the variable probabilities
xi’s by the WBGs. If WBGs are used as PCCs, normally,
each input bit stream requires an individual WBG. Thus, the
area is the sum of the areas of all WBGs including their Part
1’s and Part 2’s. However, given the architecture shown in
Fig. 1(b) for the FIR application, if we replace the comparators
for those xi bit streams by the WBGs, the Part 1’s of these
WBGs are identical and hence, only one copy of WBG Part
1 is needed. Thus, the total area of the PCCs for those xi bit
streams reduces to the area of 1 WBG Part 1 plus (n + 1)
WBG Part 2’s for an nth-order FIR filter. This mechanism of
sharing WBG Part 1 is illustrated in Fig. 2(b) using an example
of a 3rd-order FIR. Note that this mechanism of sharing WBG
approaches the theoretical cost limit for SNGs [9]. Generally,
it can be applied to reduce the area of PCCs for stochastic

bit streams of variable probabilities, if these stochastic bit
streams could be correlated. The stochastic implementation
of FIR filter shown in Fig. 1(b) satisfies this condition.
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Figure 2: Weight binary generator (WBG) and its sharing mecha-
nism: (a) a WBG for generating one stochastic bit stream [9]; (b) the
share of WBG Part 1 for generating 4 stochastic bit streams that can
be correlated.

B. Optimizing PCCs for Constant Probabilities

We use a technique proposed in our previous work [11]
to optimize the PCCs for generating stochastic bit streams
of constant probabilities, which are the streams to the select
inputs of the MUXs in the architecture shown in Fig. 1(b). The
technique proposed in [11] specifically optimizes the PCCs for
generating constant-probability stochastic bit streams that can
be correlated. In our case, the set of stochastic bit streams
to the select inputs of the MUXs at the same level1 in the
MUX tree satisfies these conditions. First, they are constant
probabilities for a fixed filter. Second, for any level in a
MUX tree, only the output of one MUX in that level will be
selected as the final output of the tree. Thus, the stochastic bit
streams to the select inputs of the MUXs at the same level can
be correlated without any influence to the final computation
result.

Now, we briefly introduce the technique proposed in [11].
One idea is that since the probability of each target bit stream
is constant, thus, we do not need to use a high-cost PCC for
those variable probabilities, such as a comparator and a WBG.
In [11], we first consider building a mincost combinational
circuit that generates a single target probability from unbiased
random bits. We use AND-inverter graphs (AIGs) [12] to
represent combinational circuits. An AIG is a directed acyclic
graph of 2-input AND gates and inverters. We measure the
cost of an AIG by the number of AND gates in the graph. We
showed that to generate a target probability C

2k
, where C is an

odd number, from k unbiased random bits, the mincost AIG
is a tree of (k − 1) AND gates. We refer to such a tree as a
mincost AND-inverter tree (MAIT). Fig. 3(a) shows an example
of a MAIT for generating the constant probability 1/16 from
4 unbiased random bits. The MAIT contains 3 AND gates.

If we want to generate multiple constant-probability
stochastic bit streams that can be correlated, the MAITs for
all individual probabilities can share some common gates to
reduce the total cost. For example, if we want to generate three

1The level is counted from the leaves to the root.



stochastic bit streams of probabilities 1/16, 3/16, and 5/16
that can be correlated, we can merge the individual MAITs
and build a final 3-output AIG as shown in Fig. 3(b). For
this example, by merging the common part, the number of
AND gates reduces from 9 to 6. The MAIT for a target
probability is not unqiue and different choices of the MAIT for
each individual target probability may lead to different amount
of cost reduction. In our work [11], we proposed a pairwise
MAIT-merging algorithm to synthesize a low-cost AIG (LAIG)
to generate multiple constant-probability stochastic bit streams
that can be correlated. We applied this technique to generate
the stochastic bit streams for the select inputs of the MUXs
at the same level.
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Figure 3: Mincost AND-inverter tree (MAIT) and low-cost AND-
inverter graph (LAIG): (a) a MAIT for a single target probability; (b)
a LAIG for generating 3 target probabilities that can be correlated.

C. The Proposed Architecture

In this section, we present a new architecture of SC-
based FIR filter using the two techniques mentioned above.
The architecture for a 4th-order FIR filter is illustrated in
Fig. 4. It is based on the single-RNS architecture introduced in
Section II-C. The stochastic bit streams xi’s are generated by
the technique proposed in Section III-A. For the stochastic bit
streams to the select inputs of the MUXs, they are generated
by the technique proposed in Section III-B. In the example
shown in Fig. 4, the MUX tree has three levels. The first level
has two MUXs and their select bit streams can be correlated.
Thus, they are generated by a 2-output LAIG. The second
level has a single MUX and its select bit stream is generated
by a single MAIT. The same for the third level.

In order to reduce the error due to correlation, we use two
more RNSs than the single-RNS architecture. Thus, we use
three different RNSs in total. The first is used to generate
the input stochastic bit streams xi’s. The second is used to
generate the select bit streams of the MUXs in the MUX tree
except the last one. The third is used to generate the select bit
stream of the last MUX in the MUX tree. Furthermore, we
apply circular shift of the second RNS’s outputs to each level
in the MUX tree except the first and the last levels, as shown
in the figure. For a general nth-order FIR filter, the proposed
architecture contains 3 RNSs, 1 WBG Part 1, (n + 1) WBG

Part 2’s, (n+1) XORs, n MUXs, dlog2 (n+ 1)e− 2 circular
shift blocks, dlog2 (n+ 1)e LAIGs or MAITs, and 1 counter.
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Figure 4: The proposed architecture of SC-based FIR filter using the
two proposed techniques to reduce the area of the PCCs. The example
is a 4th-order FIR filter. Each MAIT level generates a single output
and the LAIG level generates more than 1 output.

IV. EXPERIMENTAL RESULTS

In this section, we compared the proposed architecture with
the single-RNS architecture presented in Section II-C. All the
circuits were synthesized by Synopsys Design Compiler [13]
and placed and routed by Cadence SoC Encounter [14]. The
Nangate 45nm library was used [15]. The precision of the
input probabilities xi’s and the select input probabilities are
both chosen as 8-bit and the stochastic bit stream length is 256.
The RNSs are realized by LFSRs. In the proposed architecture,
three LFSRs have three different initial values to ensure the
independence among them. The algorithm proposed in [3] was
used to construct the optimal MUX tree with a low correlation-
induced error. The kth circular shift module, CS k, has the shift
amount as (3k mod 8). For example, CS 1 in Fig. 4 has its
shift amount as 3.

TABLE II: The computation error and area for the single-RNS ar-
chitecture and the proposed architecture for FIR filters with different
orders.

single-RNS arch. proposed arch.
# orders error(×10−2) area(µm2) error(×10−2) area(µm2)

4 4.52 423 1.69 359
8 3.48 668 2.11 437
16 4.92 1,129 3.40 575
32 5.36 2,028 3.02 843

average 4.57 1,062 2.56 554

Table II and Fig. 5 show the comparison on computation
error and area between the single-RNS architecture and our
proposed architecture for FIR filters of various orders. From
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the table and Fig. 5(a), we can see that the proposed architec-
ture has smaller error than the single-RNS architecture. Also,
it has smaller area, as the table and Fig. 5(b) show. For a
32nd-order FIR filter, the proposed architecture saves the area
by 58%.

In summary, the proposed architecture is better than the
single-RNS architecture in both computation error and area.
Although the proposed architecture uses 2 more RNSs than
the single-RNS architecture, it significantly reduces the area
of the PCCs. Thus, its entire area reduces. Furthermore, with
the 2 extra RNSs, it can reduce the error due to correlation
compared to the single-RNS architecture.

V. CONCLUSION

In this paper, we proposed a new architecture for stochastic
computing-based FIR filter. It is an improved version over a
state-of-the-art stochastic architecture for FIR filter. Specif-
ically, we introduced two techniques to reduce the area of
the probability conversion circuits (PCCs) used in the filter.
The first technique shares the common part of the weighted
binary generator to reduce the area of the PCCs for the variable
probabilities, while the second technique synthesizes low-cost
PCCs for the constant probabilities that can be correlated. With
the PCC area significantly reduced, it allows us to add few
RNSs back. This leads to a final design with both computation
error and area reduced.
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