
A General Sign Bit Error Correction Scheme for
Approximate Adders

Rui Zhou and Weikang Qian
University of Michigan-Shanghai Jiao Tong University Joint Institute

Shanghai Jiao Tong University, Shanghai, China
Email: {zhouruisjtu, qianwk}@sjtu.edu.cn

ABSTRACT
Approximate computing is an emerging design technique for

error-tolerant applications. As adders are the key building blocks
in many applications, approximate adders have been widely
studied recently. However, existing approximate adders may
introduce sign bit error when doing two’s complement signed
addition, which is not tolerable for some applications. In this work,
we propose a scheme that can correct sign bit error with low area
and delay overhead. It is a general design applicable to many
block-based approximate adders. This design not only can correct
the sign bit error when it occurs, but also can fix some errors in
the most significant bits even if there is no sign bit error.
Experimental results on a real application, namely edge detection,
showed that the approximate adders with our sign bit error
correction module were up to 5.5 times better in peak signal-to-
noise ratio than the original approximate adders, while the area
and delay overhead is small.

Keywords
Approximate computing, approximate adder, sign bit error
correction

1. INTRODUCTION
With the continuous scaling down of CMOS transistors, energy

consumption has become a major concern in designing VLSI
chips. Approximate computing, an emerging technology that
improves circuit performance and energy efficiency by allowing a
little amount of inaccuracy in the computation result, attracts
many research efforts recently, due to its applicability to many
error-tolerant applications, such as image processing, machine
learning, multimedia, and data mining [1].

As adders are key building blocks for many error-tolerant
applications, a number of approximate adders were proposed
recently [2-9]. Most of them fall into the category of block-based
approximate adder. It splits the entire adder into several blocks of
sub-adders in order to reduce computation delay. Each sub-adder
takes a speculated carry-in, which is produced based on some
previous input bits. The computation of each sub-adder is correct.
Due to the popularity of the block-based approximate adder, it is
the focus of this work.

Fig. 1: Error Tolerant Adder Type II (ETAII) proposed in [2].

A representative of the block-based approximate adder is the
Error Tolerant Adder II (ETAII) proposed in [2], which is shown
in Fig. 1. In ETAII, it segments the whole adder into blocks,
and the carry-in signal of each sub-adder is produced by a carry
generator operating on the input bits in the previous block. The
carry-in signal of each carry generator is set as 0. There are many
other examples of block-based approximate adder. The Carry Skip
Approximate Adder (CSA) proposed in [3] also has blocks, but
the carry-in signal of the i-th sub-adder depends on input bits of
the -th block and the -th block. The Low Relative
Error Approximate Adder (LREA) proposed in [4] and the
Speculative Carry Select Adder (SCSA) proposed in [5] have
similar design styles.

Fig. 2: An example of sign bit error in ETAII.

However, all these typical approximate adders mentioned above
may generate an error in the sign bit when doing two’s
complement signed addition. For example, in a 6-bit 3-block
ETAII adder, the sign bit is wrong when the two inputs are
011111 (base 2) and 100010 (base 2), as shown in Fig. 2. The
approximate sum is 110001 (base 2), but the accurate sum is
000001 (base 2). The error is caused by the wrong carry-in signal
fed into the leftmost sub-adder, which is produced by the carry
generator in the previous block.

Having a sign bit error in approximate addition may cause a
catastrophic failure for many applications and may not be
tolerable. There are only few existing approximate adders which
can correct the sign bit error, and their designs all have some
limitations. For example, the Variable Latency Speculative Adder
(VLSA) proposed in [6] combines a proposed approximate adder
with an accurate adder for error recovery. However, it requires a
large circuit area. To ensure correct sign bit calculation, it takes

Carry
Generator . . .

. . .

Carry
Generator

Sub-adderSub-adderSub-adder

Carry
Generator

Carry
Generator

Sub-adderSub-adderSub-adder

0 1

Approx. Sum
Accurate Sum

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
GLSVLSI’16, May 18-20, 2016, Boston, MA, USA.
© 2016 ACM. ISBN 978-1-4503-4274-2/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2902961.2903012

two clock cycles. Furthermore, when the correction module is
enabled, its result is always correct, which is not necessary for
error-tolerant applications. In the LREA, the authors proposed a
sign bit error correction module, but it is only applicable to LREA
itself [4].

In this paper, we proposed a low-overhead module to correct
sign bit error for block-based approximate adders. Compared to
the previous approaches used in [4] and [6], our module is a
general design which is applicable to many existing approximate
adders regardless how the speculated carry-in to the sub-adder is
generated. The only requirement is that all sub-adders are correct.

In summary, the main contributions of our work are as follows:
1) We give a general and comprehensive analysis on when sign

bit error occurs.
2) Based on the error analysis, we propose an efficient design to

correct the sign bit error.
3) We apply the proposed design to several existing approximate

adders and experimentally demonstrate its good performance.
The remainder of this paper is organized as follows. In

Section 2, we give an analysis on when sign bit error occurs. In
Section 3, we propose a method to correct sign bit error. In
Section 4, we show our optimized circuit design. In Section 5, we
show the experimental results. Finally, in Section 6, we draw the
conclusion.

2. ERROR ANALYSIS
In this section, we will analyze all kinds of situations where a

sign bit error might occur in the computation of approximate
adder and provide the correction mechanism for each situation. In
our analysis, we assume that the inputs do not cause an overflow.

The only pre-requisite of our analysis is that the sub-adder of
each block is correct. This requirement is satisfied for all the
existing block-based approximate adders. Before the formal
analysis, we define the following notations.
 and are the two

inputs of the adder, where and represent the -th bits of
and , respectively

 We assume the approximate adder has blocks and the -th
 block has bits. Therefore, we have

.
 , and represent the -th sum bit,

carry-out bit, propagation bit, and generation bit of the accurate
adder, respectively. represents the carry-in of the entire
adder. For the ease of discussion, we define . By the
behavior of the adder, we have

.
Note that the sum bit and the carry-out bit can be calculated by
the propagate bit and the generate bit as follows:

, .
For analysis purpose, we also split the accurate adder into

blocks. For each block of approximate adder and accurate adder,
we define the following signals.
 : the carry-in signal of the -th sub-adder of the

approximate adder. This signal varies for different approximate
adders.

 : the carry-in signal of the -th block of the accurate
adder.

 : the -bit sum of the -th sub-adder of the approximate
adder.

 : the -bit sum of the -th block of the accurate adder.
 (): the sum bit at position in block of

the approximate adder.

 (): the sum bit at position in block of
the accurate adder.

 (): the carry-out bit at position in the -
th sub-adder of the approximate adder.

 (): the carry-out bit at position in block
of the accurate adder.

 and : the 2 -bit inputs of block .
 and (): the 2 input bits at position in

block .
 (): the propagate bit at position in block .
 (): the generate bit at position in block .

Some of the above signals for approximate adder and accurate
adder are shown in Fig. 3(a) and 3(b), respectively.

(a)

(b)

Sub-adder

 (bits)

Sub-adder

 (bits)

Fig. 3: Signal definitions for (a) an approximate adder and (b)
an accurate adder.

The necessary condition for a sign bit error to occur is that for
block , . This condition can be
further divided into two cases:
 Case 2.1: and ;
 Case 2.2: and .

We will discuss them separately in the following sections.

2.1 and
Without loss of generality, we assume that the input .

Then, there are four cases where a sign bit error occurs:
1. ;
2. ;
3. ;
4. .

We consider these four cases in the following subsections.
2.1.1 The Case where

This case is shown in Fig. 4(a). In this case, we must have
 and . However, since

 and for , we
must have for . Thus, the
speculated carry-in to the sign bit is . Given that
the sign bits of the inputs and are both 0, we must have

, which contradicts with the claim that
. Therefore, this situation cannot happen.

2.1.2 The Case where
This case is shown in Fig. 4(b). In this case, we must have

 and . This situation is possible.
For example, when and , then we
have and . To correct the error in this
case, we need to invert the sign bit and set the other sum bits in
block to 0.

Sub-adder

Sub-adder

Sub-adder

Sub-adder

(a) (b) (c) (d)

Fig. 4: Illustration of (a) Case 2.1.1, (b) Case 2.1.2, (c) Case 2.1.3, and (d) Case 2.1.4.

Sub-adder

Sub-adder

Sub-adder

Sub-adder

(a) (b) (c) (d)

 Fig. 5: Illustration of (a) Case 2.2.1, (b) Case 2.2.2, (c) Case 2.2.3, and (d) Case 2.2.4.

2.1.3 The Case where

This case is shown in Fig. 4(c). In this case, we must have
 and . This situation is possible.

For example, when and , then we
have and . To correct the error in this
case, we need to invert the sign bit and set the other sum bits in
block to 0.
2.1.4 The Case where

This case is shown in Fig. 4(d). In this case, we must have

 and . However, applying the
same argument used for Case 2.1.1, we can show that
should be . Therefore, this situation cannot happen.

2.2 and
We consider the same four cases as shown in Section 2.1.

2.2.1 The Case where
This case is shown in Fig. 5(a). In this case, we must have

 and . This situation is possible.
For example, when and , then we
have and . To correct the error in this
case, we need to invert the sign bit and set the other sum bits in
block to 1.
2.2.2 The Case where

This case is shown in Fig. 5(b). In this case, we must have
 and . However, since

 and for , we must
have for . Thus, the
correct carry-in to the sign bit is . Given that the
sign bits of the inputs and are both 1, we must have

, which contradicts with the claim that .
Therefore, this situation cannot happen.

2.2.3 The Case where

This case is shown in Fig. 5(c). In this case, we must have
 and . However, applying the

same argument used for Case 2.2.2, we can show that
should be . Therefore, this situation cannot happen.
2.2.4 The Case where

This case is shown in Fig. 5(d). In this case, we must have

 and . This situation is possible.
For example, when and , then we
have and . To correct the error in this
case, we need to invert the sign bit and set the other sum bits in
block to 1.

2.3 Summary
The above discussion considers all cases where a sign bit error

might occur when we do two’s complement addition. To sum up, if
a sign bit error happens, we need to identify whether the case is
Case 2.1 or Case 2.2. To correct a sign bit error for Case 2.1, we
invert the sign bit and set all the other sum bits in block to
0. To correct a sign bit error for Case 2.2, we invert the sign bit and
set all the other sum bits in block to 1.

3. METHODOLOGY FOR CORRECTING
SIGN BIT ERROR

In this section, we show a general methodology for correcting
sign bit error.

First, we define the group propagate signal for each block.
For any block , If , then
all the propagate signals of block are 1. Thus, in the accurate
adder, the carry-in of block propagates to the carry-out of block ,
which is just the carry-in of block . Therefore, we have

 when .
The group propagate signal for block is defined

slightly different from the other blocks in that it does not include

. Specifically, For the ease of
discussion, we also define .

When , the carry-out signal in the
-th sub-adder of the approximate adder does not depend on the

speculated carry-in signal of the sub-adder. Therefore, it is equal
to the correct carry-out signal . As a result, the sign bit
produced by the approximate adder is correct. Thus, in the
following, we assume that .

From the analysis shown in Section 2, we can see that to check
whether there is a sign bit error, we need to know .

To obtain , we first modify each sub-adder in the
approximate adder by adding some extra logic to produce a carry-
out. The carry-out of the -th sub-adder, denoted as , can
be calculated by the existing signals in the sub-adder as

The circuit is shown in Fig. 6. For the ease of discussion, we
define .

Fig. 6: Circuits for generating the carry-out signal of a sub-
adder.

It is easy to see that when , the carry-out is
equal to the correct carry-out in the accurate adder. Indeed, in our
proposed design, the modification to each sub-adder is not
necessary, as long as when , there is a signal equal to the
correct carry-out of block . This is true for many existing
approximate adders in which for any block , there
is a carry generator that produces a speculated carry-out signal
based on at least all the input bits in that block. For example, the
ETAII shown in Fig. 1, the CSA proposed in [3], and the LREA
proposed in [4] all satisfy this condition. For this type of
approximate adder, when , the speculated carry-out
produced by the carry generator is equal to the correct carry-out of
block . We can just use the speculated carry-out as the signal

, which takes no extra circuitry.
Since we assume and , there must exist a

 such that and
. This value plays an important role in our correction

scheme. Since , by the above discussion, the signal
 in the approximate adder gives the correct carry-out of

block , which is just the correct carry-in of block ,
. Because , the

accurate carry-in of block , is equal to
, which in turn is equal to . This gives us a

way to obtain . Note that the speculated carry-in
 is also available in the given approximate adder. Then

we can compare these two signals to check for sign bit error. If
, there is no sign bit error. Otherwise,

the computation might have a sign bit error and we can fix the
error based on the different correction strategies discussed in
Section 2.

However, in our actual implementation, we use a better strategy
that not only can fix sign bit error when it occurs, but also can fix
some errors in the most significant bits even if there is no sign bit
error.

Our idea utilizes the signal and the fact that
. When , for the accurate adder, we

have for and ,
for , and . When ,
for the accurate adder, we have for and

, for , and
.

Summarizing the above patterns, we can conclude that no
matter whether is 0 or 1, for the accurate adder, we have

 for and ,

 for , and . Thus,
no matter whether the above output bits in the approximate adder
have error or not, we can simply set them to their correct values
shown above. Once we get the correct carry-out , the
correct sign bit can be easily obtained as

For the remaining sum bits in blocks , we just keep
them unchanged.

4. CIRCUIT DESIGN
In this section, we show the circuit design for correcting the

sign bit error, which implements the methodology discussed in
Section 3.

The implementation needs to address two key questions: (1)
how to identify the specific value for any input vector? (2) how
to obtain the value ?

To address the above questions, we define the following signals.
 , for . By the

definition of the value , for , we have .
For , since , we have . This gives
us a way to test whether or .

 , for . By the definition of the
value , we have . For any , since

, we have . For any , since ,
we have . In summary, among all ’s, only .
This gives us a way to identify .

 . Since among all ’s, only ,
we have . This gives us a way to obtain .

The circuits for the signals , , and are shown in Fig. 7.

...

...
(a)

(b) (c)
Fig. 7: Circuits for (a) the signal , (b) the signal , and (c)
the signal .

For any , if , then by the property of
signal , we must have . Based on the correction
methodology discussed in Section 3, for any , we
set , where is the new sum bit at position in
block of the approximate adder. For any , if

, then we must have . Based on the correction
methodology, we keep as the old approximate value .
If , then we set , for any ,

and set , where is the new carry-out
bit at position in block of the approximate adder.
If , the old sum bits and the
old carry-out bit are kept.

Based on the above discussion, we can realize by a MUX,
as shown in Fig. 8(a). The new sign bit is realized by
the circuit shown in Fig. 8(b).

0

1
MUX

(a)

0

1
MUX

(b)

Fig. 8: Circuits for (a) the new sum bits and (b) the new sign
bit of the approximate adder.

5. EXPERIMENTAL RESULTS
In this section, we present the experimental results on our

proposed sign bit error correction module. The circuits were
synthesized using Synopsys Design Compiler [10] and mapped to
a 45nm Nangate cell library [11].

5.1 Overhead for Different Approximate
Adders

We applied the proposed sign bit error correction module to
three existing approximate adders, ETAII [2], CSA [3], and
LREA [4]. Table 1 shows the area, delay, power consumption,
and power-delay product (PDP) of the three approximate adders
with (denoted by “sign”) and without (denoted by “basic”) the
sign bit error correction module. For comparison purpose, we also
list the four metrics of the conventional ripple carry adder (RCA)
and carry look-ahead adder (CLA). All the adders are 16-bit
adders. The three approximate adders are divided into 4 blocks of
equal size of 4. For each approximate adder with the sign bit error
correction module, the percentage increase of each metric due to
the sign bit error correction module is shown inside the
parentheses after the absolute value.
Table 1. Area, delay, power consumption, and power-delay
product (PDP) of different 16-bit adders.

 Area
)

Delay
(ns)

Power
(mW)

PDP
(fJ)

ETAII(basic) 99.5 0.97 22.3 21.6
ETAII (sign) 129.1 (30) 1.12 (15) 22.8 (2.2) 25.5 (18)
CSA (basic) 114.6 1.16 23.0 26.7
CSA (sign) 138.1 (21) 1.31 (13) 23.9 (3.9) 31.3 (17)
LREA(basic) 121.0 1.24 25.8 31.9
LREA (sign) 139.6 (15) 1.28 (3.2) 26.2 (1.6) 33.5 (5.0)
RCA 109.8 2.32 23.9 55.4
CLA 145.3 1.78 29.9 53.2

From the table, we can see that by adding the sign bit error
correction module, the area increases 15%~30%, the delay
increases 3.2%~15%, the power consumption increases 1.6%~3.9%
and the PDP increases 5.0%~18%. The overhead for ETAII is the
largest, since ETAII design is the simplest among the three.
Overall, the overhead of the sign bit error correction module is
small. Compared with RCA, although the approximate adders
with the sign bit error correction module have slightly larger

power consumption, they have much smaller delay and PDP.
Compared with CLA, all of the four metrics of the approximate
adders with the sign bit error correction module are smaller.

5.2 Overhead for Same Approximate Adder
of Different Sizes

In this experiment, we applied the proposed sign bit error
correction module to ETAIIs of different design parameters. We
considered 5 different ETAIIs, which are listed in Table 2. The
pair indicates the adder is an -bit adder with blocks of
equal size . For example, the pair (32, 4) indicates a 32-bit
ETAII with 8 blocks of equal size 4. Table 2 shows the area, delay,
and power consumption of them with (column “sign”) and
without (column “basic”) the sign bit error correction module. The
values in the parentheses are the percentage increases.

Table 2. Area, delay, and power consumption of different
ETAIIs with and without the sign bit error correction module.

ETAII
parameters

Area) Delay (ns) Power (mW)
basic sign basic sign basic sign

(16, 2) 91.0 112.4
(24) 0.68 1.05

(54) 22.3 22.4
(0.4)

(16, 4) 99.5 129.1
(30) 0.97 1.12

(15) 22.3 22.8
(2.2)

(32, 2) 178.8 255.3
(43) 0.57 1.76

(209) 23.2 23.8
(2.6)

(32, 4) 208.5 261.8
(26) 0.97 1.42

(46) 23.6 23.8
(0.8)

(32, 8) 223.4 257.8
(15) 1.64 1.76

(7.3) 25.9 26.3
(1.5)

From the table, we can see that when the number of blocks

increases, the overhead in area and delay due to the sign bit error
correction module also increases. The reason is that some sub-
modules in the sign bit error correction module, such as the
circuits for the signals and , have area and delay complexity
proportional to the number of blocks.

5.3 Performance Study on Edge Detection
Application

To evaluate the effect of our sign bit error correction module in
real applications, we applied several approximate adders with and
without the sign bit error correction module to an image
processing application, namely Roberts cross-based edge
detection [12]. We used peak signal-to-noise ratio (PSNR) of the
image as the performance metric. It is defined as

where is the maximum possible pixel value of the image.
 is the mean square error (MSE), which is defined as

where and are the width and the height of an image,
respectively. The values and are the results
calculated by the accurate adder and the approximate adder,
respectively, at location in the image. For an accurate adder,
its and hence, its . The higher the PSNR is,
the better the performance of the adder is.

We used three existing approximate adders, ETAII, CSA, and
LREA in our experiment. We applied these adders with and
without the sign bit error correction module to perform edge
detection on 10 sample images chosen from an online library [13].

Table 3 shows the average PSNR over the 10 images in our
simulation. The adder parameter pairs (10, 2) and (10, 5) in the
table have the same meaning as before. The pair (10, 3) refers to
an adder with 4 blocks, of which the leftmost three are of size 3
and the rightmost one is of size 1. Note that some entries in the
table is because the MSE is either zero or very small. From
the table, we can see that the approximate adders with the error
correction module are up to better in PSNR than the original
ones.
Table 3. PSNRs of different approximate adders with and
without the sign bit error correction module.

Adder
parameter

ETAII CSA LREA
basic sign basic sign basic sign

(10, 2) 9.34 28.2 7.95 33.8 9.88 42.7
(10, 3) 11.0 31.7 13.3 42.6 9.83 54.5
(10, 5) 17.8

To visually demonstrate the effectiveness of our proposed

module, we show one sample image processed by the accurate
adder and the LREAs with and without the sign bit error
correction module for and in Fig. 9.

 (a) Input image (b) Accurate adder

(c) k=2, no correction module (d) k=2, with correction module

(e) k=3, no correction module (f) k=3, with correction module

(g) k=5, no correction module (h) k=5, with correction module

Fig. 9: Roberts cross-based edge detection using different
adders.

From Fig. 9, we can clearly see that the approximate adders
with our sign bit error correction module have much better
performance than those adders without the correction module.

Finally, we did another comparison between two approximate
adders. One is an LREA with and no sign bit
error correction module. The other is an LREA with

 and the sign bit error correction module. The comparison
of their PSNRs, areas, delays, and power consumptions is shown
in Table 4.

Table 4. Comparison of two approximate adders.

 PSNR Area
)

Delay
(ns)

Power
(mW)

LREA (10, 5), basic 17.8 76.3 1.40 19.0
LREA (10, 2), sign 42.7 85.3 1.01 18.2

From the table, we can see that the LREA with

and the sign bit error correction module is 12% larger in area than
the LREA with and no sign bit error correction
module. However, the delay and the power consumption of the
former are 28% and 4.2% smaller than those of the latter,
respectively. Furthermore, the PSNR of the former is 140% better
than that of the latter. This result shows that in the case where the
circuit area, delay, and power consumption are comparable, an
approximate adder with the proposed sign bit error correction
module is much better in PSNR than an approximate adder
without the correction module.

6. CONCLUSION
In this paper, we proposed a general sign bit error correction

scheme, which is applicable to many block-based approximate
adders. The only requirement our scheme relies on is that each
sub-adder in the approximate adder is correct, which is usually
held. Our design is very efficient with low area, delay, and energy
overhead. According to the properties of each specific
approximate adder, the proposed design may be further simplified.
The proposed module not only can correct the sign bit error when
it occurs, but also can fix some errors in the most significant bits
even if there is no sign bit error. Thus, it can further reduce the
relative error and error rate of the original approximate adder. We
applied our proposed module to an edge detection application and
demonstrated the good performance of it.

ACKNOWLEDGEMENTS
This work is supported by National Natural Science Foundation

of China (NSFC) under Grant No. 61574089.

7. REFERENCES
[1] J. Han and M. Orshansky, “Approximate computing: An emerging

paradigm for energy-efficient design,” in ETS, 2013, pp. 1–6.
[2] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high

speed adder for error-tolerant application,” in ISIC, 2009, pp. 69–72.
[3] Y. Kim, Y. Zhang, and P. Li, “An energy efficient approximate

adder with carry skip for error resilient neuromorphic VLSI systems,”
in ICCAD, 2013, pp. 130–137.

[4] J. Hu and W. Qian, “A new approximate adder with low relative
error and correct sign calculation,” in DATE, 2015, pp. 1449–1454.

[5] K. Du, P. Varman, and K. Mohanram, “High performance reliable
variable latency carry select addition,” in DATE, 2012, pp. 1257–
1262.

[6] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative
addition: A new paradigm for arithmetic circuit design,” in DATE,
2008, pp. 1250–1255.

[7] A. B. Kahng and S. Kang, “Accuracy-configurable adder for
approximate arithmetic designs,” in DAC, 2012, pp. 820–825.

[8] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On
reconfiguration-oriented approximate adder design and its
application,” in ICCAD, 2013, pp. 48–54.

[9] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-
inspired imprecise computational blocks for efficient VLSI
implementation of softcomputing applications,” IEEE Transactions
on Circuits and Systems I, vol. 57, no. 4, pp. 850–862, 2010.

[10] Design Compiler, Synopsys Inc., http://www.synopsys.com
[11] Nangate 45nm Library, Nangate Inc., http://www.nangate.com
[12] L. G. Roberts, “Machine perception of three-dimensional soups,”

Ph.D. dissertation, Massachusetts Institute of Technology, 1963.
[13] Image databases: standard test images,

http://www.imageprocessingplace.com/root_files_V3/image_databas
es.htm

