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ABSTRACT 
Approximate computing is an emerging design technique for 

error-tolerant applications. As adders are the key building blocks 
in many applications, approximate adders have been widely 
studied recently. However, existing approximate adders may 
introduce sign bit error when doing two’s complement signed 
addition, which is not tolerable for some applications. In this work, 
we propose a scheme that can correct sign bit error with low area 
and delay overhead. It is a general design applicable to many 
block-based approximate adders. This design not only can correct 
the sign bit error when it occurs, but also can fix some errors in 
the most significant bits even if there is no sign bit error. 
Experimental results on a real application, namely edge detection, 
showed that the approximate adders with our sign bit error 
correction module were up to 5.5 times better in peak signal-to-
noise ratio than the original approximate adders, while the area 
and delay overhead is small. 

Keywords 
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1. INTRODUCTION 
With the continuous scaling down of CMOS transistors, energy 

consumption has become a major concern in designing VLSI 
chips. Approximate computing, an emerging technology that 
improves circuit performance and energy efficiency by allowing a 
little amount of inaccuracy in the computation result, attracts 
many research efforts recently, due to its applicability to many 
error-tolerant applications, such as image processing, machine 
learning, multimedia, and data mining [1]. 

As adders are key building blocks for many error-tolerant 
applications, a number of approximate adders were proposed 
recently [2-9]. Most of them fall into the category of block-based 
approximate adder. It splits the entire adder into several blocks of 
sub-adders in order to reduce computation delay. Each sub-adder 
takes a speculated carry-in, which is produced based on some 
previous input bits. The computation of each sub-adder is correct. 
Due to the popularity of the block-based approximate adder, it is 
the focus of this work. 

 
Fig. 1: Error Tolerant Adder Type II (ETAII) proposed in [2]. 

A representative of the block-based approximate adder is the 
Error Tolerant Adder II (ETAII) proposed in [2], which is shown 
in Fig. 1. In ETAII, it segments the whole adder into  blocks, 
and the carry-in signal of each sub-adder is produced by a carry 
generator operating on the input bits in the previous block. The 
carry-in signal of each carry generator is set as 0. There are many 
other examples of block-based approximate adder. The Carry Skip 
Approximate Adder (CSA) proposed in [3] also has  blocks, but 
the carry-in signal of the i-th sub-adder depends on input bits of 
the -th block and the -th block. The Low Relative 
Error Approximate Adder (LREA) proposed in [4] and the 
Speculative Carry Select Adder (SCSA) proposed in [5] have 
similar design styles. 

 
Fig. 2: An example of sign bit error in ETAII. 

However, all these typical approximate adders mentioned above 
may generate an error in the sign bit when doing two’s 
complement signed addition. For example, in a 6-bit 3-block 
ETAII adder, the sign bit is wrong when the two inputs are 
011111 (base 2) and 100010 (base 2), as shown in Fig. 2. The 
approximate sum is 110001 (base 2), but the accurate sum is 
000001 (base 2). The error is caused by the wrong carry-in signal 
fed into the leftmost sub-adder, which is produced by the carry 
generator in the previous block. 

Having a sign bit error in approximate addition may cause a 
catastrophic failure for many applications and may not be 
tolerable. There are only few existing approximate adders which 
can correct the sign bit error, and their designs all have some 
limitations. For example, the Variable Latency Speculative Adder 
(VLSA) proposed in [6] combines a proposed approximate adder 
with an accurate adder for error recovery. However, it requires a 
large circuit area. To ensure correct sign bit calculation, it takes 
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two clock cycles. Furthermore, when the correction module is 
enabled, its result is always correct, which is not necessary for 
error-tolerant applications. In the LREA, the authors proposed a 
sign bit error correction module, but it is only applicable to LREA 
itself [4].  

In this paper, we proposed a low-overhead module to correct 
sign bit error for block-based approximate adders. Compared to 
the previous approaches used in [4] and [6], our module is a 
general design which is applicable to many existing approximate 
adders regardless how the speculated carry-in to the sub-adder is 
generated. The only requirement is that all sub-adders are correct. 

In summary, the main contributions of our work are as follows:  
1) We give a general and comprehensive analysis on when sign 

bit error occurs. 
2) Based on the error analysis, we propose an efficient design to 

correct the sign bit error. 
3) We apply the proposed design to several existing approximate 

adders and experimentally demonstrate its good performance. 
The remainder of this paper is organized as follows. In  

Section 2, we give an analysis on when sign bit error occurs. In 
Section 3, we propose a method to correct sign bit error. In 
Section 4, we show our optimized circuit design. In Section 5, we 
show the experimental results. Finally, in Section 6, we draw the 
conclusion. 

2. ERROR ANALYSIS 
In this section, we will analyze all kinds of situations where a 

sign bit error might occur in the computation of approximate 
adder and provide the correction mechanism for each situation. In 
our analysis, we assume that the inputs do not cause an overflow. 

The only pre-requisite of our analysis is that the sub-adder of 
each block is correct. This requirement is satisfied for all the 
existing block-based approximate adders. Before the formal 
analysis, we define the following notations. 
  and  are the two 

inputs of the adder, where  and  represent the -th bits of  
and , respectively 

 We assume the approximate adder has  blocks and the -th 
 block has bits. Therefore, we have 

. 
 , and  represent the -th  sum bit, 

carry-out bit, propagation bit, and generation bit of the accurate 
adder, respectively.  represents the carry-in of the entire 
adder. For the ease of discussion, we define . By the 
behavior of the adder, we have 

. 
Note that the sum bit and the carry-out bit can be calculated by 
the propagate bit and the generate bit as follows: 

,   . 
For analysis purpose, we also split the accurate adder into  

blocks. For each block of approximate adder and accurate adder, 
we define the following signals. 
 : the carry-in signal of the -th sub-adder of the 

approximate adder. This signal varies for different approximate 
adders. 

 : the carry-in signal of the -th block of the accurate 
adder. 

 : the -bit sum of the -th sub-adder of the approximate 
adder. 

 : the -bit sum of the -th block of the accurate adder. 
  ( ): the sum bit at position  in block  of 

the approximate adder. 

  ( ): the sum bit at position  in block  of 
the accurate adder. 

  ( ): the carry-out bit at position  in the -
th sub-adder of the approximate adder. 

  ( ): the carry-out bit at position  in block  
of the accurate adder. 

  and : the 2 -bit inputs of block . 
  and  ( ): the 2 input bits at position  in 

block . 
  ( ): the propagate bit at position  in block . 
  ( ): the generate bit at position  in block . 

Some of the above signals for approximate adder and accurate 
adder are shown in Fig. 3(a) and 3(b), respectively. 

(a)

 

(b)
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Fig. 3: Signal definitions for (a) an approximate adder and (b) 
an accurate adder. 

The necessary condition for a sign bit error to occur is that for 
block , . This condition can be 
further divided into two cases: 
 Case 2.1:  and ; 
 Case 2.2:  and . 

We will discuss them separately in the following sections. 

2.1  and  
Without loss of generality, we assume that the input . 

Then, there are four cases where a sign bit error occurs: 
1. ; 
2. ; 
3. ; 
4. . 

We consider these four cases in the following subsections. 
2.1.1  The Case where  

This case is shown in Fig. 4(a). In this case, we must have 
 and . However, since 

 and  for , we 
must have  for . Thus, the 
speculated carry-in to the sign bit is . Given that 
the sign bits of the inputs  and  are both 0, we must have 

, which contradicts with the claim that 
. Therefore, this situation cannot happen. 

2.1.2  The Case where  
This case is shown in Fig. 4(b). In this case, we must have 

 and . This situation is possible. 
For example, when  and , then we 
have  and . To correct the error in this 
case, we need to invert the sign bit and set the other sum bits in 
block  to 0. 
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Fig. 4: Illustration of (a) Case 2.1.1, (b) Case 2.1.2, (c) Case 2.1.3, and (d) Case 2.1.4. 
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  Fig. 5: Illustration of (a) Case 2.2.1, (b) Case 2.2.2, (c) Case 2.2.3, and (d) Case 2.2.4. 

2.1.3 The Case where 
 

This case is shown in Fig. 4(c). In this case, we must have 
 and . This situation is possible. 

For example, when  and ,  then we 
have  and . To correct the error in this 
case, we need to invert the sign bit and set the other sum bits in 
block  to 0. 
2.1.4 The Case where 

 
This case is shown in Fig. 4(d). In this case, we must have 

 and . However, applying the 
same argument used for Case 2.1.1, we can show that  
should be . Therefore, this situation cannot happen. 

2.2  and  
We consider the same four cases as shown in Section 2.1. 

2.2.1 The Case where  
This case is shown in Fig. 5(a). In this case, we must have 

 and . This situation is possible. 
For example, when  and , then we 
have  and . To correct the error in this 
case, we need to invert the sign bit and set the other sum bits in 
block  to 1. 
2.2.2 The Case where  

This case is shown in Fig. 5(b). In this case, we must have 
 and . However, since 

 and  for , we must 
have  for . Thus, the 
correct carry-in to the sign bit is . Given that the 
sign bits of the inputs  and  are both 1, we must have 

, which contradicts with the claim that . 
Therefore, this situation cannot happen. 

2.2.3 The Case where 
 

This case is shown in Fig. 5(c). In this case, we must have 
 and . However, applying the 

same argument used for Case 2.2.2, we can show that  
should be . Therefore, this situation cannot happen. 
2.2.4 The Case where 

 
This case is shown in Fig. 5(d). In this case, we must have 

 and . This situation is possible. 
For example, when  and ,  then we 
have  and . To correct the error in this 
case, we need to invert the sign bit and set the other sum bits in 
block  to 1. 

2.3 Summary 
The above discussion considers all cases where a sign bit error 

might occur when we do two’s complement addition. To sum up, if 
a sign bit error happens, we need to identify whether the case is 
Case 2.1 or Case 2.2. To correct a sign bit error for Case 2.1, we 
invert the sign bit and set all the other sum bits in block  to 
0. To correct a sign bit error for Case 2.2, we invert the sign bit and 
set all the other sum bits in block  to 1. 

3. METHODOLOGY FOR CORRECTING 
SIGN BIT ERROR 

In this section, we show a general methodology for correcting 
sign bit error. 

First, we define the group propagate signal  for each block. 
For any block ,  If , then 
all the propagate signals of block  are 1. Thus, in the accurate 
adder, the carry-in of block  propagates to the carry-out of block , 
which is just the carry-in of block . Therefore, we have 

 when . 
The group propagate signal for block  is defined 

slightly different from the other blocks in that it does not include 



. Specifically,  For the ease of 
discussion, we also define . 

When , the carry-out signal  in the 
-th sub-adder of the approximate adder does not depend on the 

speculated carry-in signal of the sub-adder. Therefore, it is equal 
to the correct carry-out signal . As a result, the sign bit 
produced by the approximate adder is correct. Thus, in the 
following, we assume that . 

From the analysis shown in Section 2, we can see that to check 
whether there is a sign bit error, we need to know . 

To obtain , we first modify each sub-adder in the 
approximate adder by adding some extra logic to produce a carry-
out. The carry-out of the -th sub-adder, denoted as , can 
be calculated by the existing signals in the sub-adder as 

The circuit is shown in Fig. 6. For the ease of discussion, we 
define . 

 
 

 

 
Fig. 6: Circuits for generating the carry-out signal of a sub-
adder. 

It is easy to see that when , the carry-out  is 
equal to the correct carry-out in the accurate adder. Indeed, in our 
proposed design, the modification to each sub-adder is not 
necessary, as long as when , there is a signal equal to the 
correct carry-out of block . This is true for many existing 
approximate adders in which for any block , there 
is a carry generator that produces a speculated carry-out signal 
based on at least all the input bits in that block. For example, the 
ETAII shown in Fig. 1, the CSA proposed in [3], and the LREA 
proposed in [4] all satisfy this condition. For this type of 
approximate adder, when , the speculated carry-out 
produced by the carry generator is equal to the correct carry-out of 
block . We can just use the speculated carry-out as the signal 

, which takes no extra circuitry. 
Since we assume  and , there must exist a 

 such that  and 
. This value  plays an important role in our correction 

scheme. Since , by the above discussion, the signal 
 in the approximate adder gives the correct carry-out of 

block , which is just the correct carry-in of block , 
. Because , the 

accurate carry-in of block ,  is equal to 
, which in turn is equal to . This gives us a 

way to obtain . Note that the speculated carry-in 
 is also available in the given approximate adder. Then 

we can compare these two signals to check for sign bit error. If 
, there is no sign bit error. Otherwise, 

the computation might have a sign bit error and we can fix the 
error based on the different correction strategies discussed in 
Section 2. 

However, in our actual implementation, we use a better strategy 
that not only can fix sign bit error when it occurs, but also can fix 
some errors in the most significant bits even if there is no sign bit 
error. 

Our idea utilizes the signal  and the fact that 
. When , for the accurate adder, we 

have  for  and ,  
for , and . When  , 
for the accurate adder, we have  for  and 

,  for , and 
. 

Summarizing the above patterns, we can conclude that no 
matter whether  is 0 or 1, for the accurate adder, we have 

 for  and , 

 for , and . Thus, 
no matter whether the above output bits in the approximate adder 
have error or not, we can simply set them to their correct values 
shown above. Once we get the correct carry-out , the 
correct sign bit can be easily obtained as 

For the remaining sum bits in blocks , we just keep 
them unchanged. 

4. CIRCUIT DESIGN 
In this section, we show the circuit design for correcting the 

sign bit error, which implements the methodology discussed in 
Section 3. 

The implementation needs to address two key questions: (1) 
how to identify the specific value  for any input vector? (2) how 
to obtain the value ? 

To address the above questions, we define the following signals. 
 , for . By the 

definition of the value , for , we have . 
For , since , we have . This gives 
us a way to test whether  or . 

 , for . By the definition of the 
value , we have . For any , since 

, we have . For any , since , 
we have . In summary, among all ’s, only . 
This gives us a way to identify . 

 . Since among all ’s, only , 
we have . This gives us a way to obtain . 

The circuits for the signals , , and  are shown in Fig. 7. 
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(a)

(b) (c)  
Fig. 7: Circuits for (a) the signal , (b) the signal , and (c) 
the signal . 

For any , if , then by the property of 
signal , we must have . Based on the correction 
methodology discussed in Section 3, for any , we 
set , where  is the new sum bit at position  in 
block  of the approximate adder. For any , if 

, then we must have . Based on the correction 
methodology, we keep  as the old approximate value . 
If , then we set , for any , 



and set , where  is the new carry-out 
bit at position  in block  of the approximate adder. 
If , the old sum bits   and the 
old carry-out  bit  are kept. 

Based on the above discussion, we can realize  by a MUX, 
as shown in Fig. 8(a). The new sign bit  is realized by 
the circuit shown in Fig. 8(b). 
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Fig. 8: Circuits for (a) the new sum bits and (b) the new sign 
bit of the approximate adder. 

5. EXPERIMENTAL RESULTS 
In this section, we present the experimental results on our 

proposed sign bit error correction module. The circuits were 
synthesized using Synopsys Design Compiler [10] and mapped to 
a 45nm Nangate cell library [11]. 

5.1 Overhead for Different Approximate 
Adders 

We applied the proposed sign bit error correction module to 
three existing approximate adders, ETAII [2], CSA [3], and 
LREA [4]. Table 1 shows the area, delay, power consumption, 
and power-delay product (PDP) of the three approximate adders 
with (denoted by “sign”) and without (denoted by “basic”) the 
sign bit error correction module. For comparison purpose, we also 
list the four metrics of the conventional ripple carry adder (RCA) 
and carry look-ahead adder (CLA). All the adders are 16-bit 
adders. The three approximate adders are divided into 4 blocks of 
equal size of 4. For each approximate adder with the sign bit error 
correction module, the percentage increase of each metric due to 
the sign bit error correction module is shown inside the 
parentheses after the absolute value. 
Table 1. Area, delay, power consumption, and power-delay 
product (PDP) of different 16-bit adders. 

 Area 
) 

Delay 
(ns) 

Power 
(mW) 

PDP 
(fJ) 

ETAII(basic) 99.5 0.97 22.3 21.6 
ETAII (sign) 129.1 (30) 1.12 (15) 22.8 (2.2) 25.5 (18) 
CSA (basic) 114.6 1.16 23.0 26.7 
CSA (sign) 138.1 (21) 1.31 (13) 23.9 (3.9) 31.3 (17) 
LREA(basic) 121.0 1.24 25.8 31.9 
LREA (sign) 139.6 (15) 1.28 (3.2) 26.2 (1.6) 33.5 (5.0) 
RCA 109.8 2.32 23.9 55.4 
CLA 145.3 1.78 29.9 53.2 
 

From the table, we can see that by adding the sign bit error 
correction module, the area increases 15%~30%, the delay 
increases 3.2%~15%, the power consumption increases 1.6%~3.9% 
and the PDP increases 5.0%~18%. The overhead for ETAII is the 
largest, since ETAII design is the simplest among the three. 
Overall, the overhead of the sign bit error correction module is 
small. Compared with RCA, although the approximate adders 
with the sign bit error correction module have slightly larger 

power consumption, they have much smaller delay and PDP. 
Compared with CLA, all of the four metrics of the approximate 
adders with the sign bit error correction module are smaller. 

5.2 Overhead for Same Approximate Adder 
of Different Sizes 

In this experiment, we applied the proposed sign bit error 
correction module to ETAIIs of different design parameters. We 
considered 5 different ETAIIs, which are listed in Table 2. The 
pair  indicates the adder is an -bit adder with  blocks of 
equal size . For example, the pair (32, 4) indicates a 32-bit 
ETAII with 8 blocks of equal size 4. Table 2 shows the area, delay, 
and power consumption of them with (column “sign”) and 
without (column “basic”) the sign bit error correction module. The 
values in the parentheses are the percentage increases. 
 
Table 2. Area, delay, and power consumption of different 
ETAIIs with and without the sign bit error correction module. 

ETAII 
parameters 

Area ) Delay (ns) Power (mW) 
basic sign basic sign basic sign 

(16, 2) 91.0 112.4 
(24) 0.68 1.05 

(54) 22.3 22.4 
(0.4) 

(16, 4) 99.5 129.1 
(30) 0.97 1.12 

(15) 22.3 22.8 
(2.2) 

(32, 2) 178.8 255.3 
(43) 0.57 1.76 

(209) 23.2 23.8 
(2.6) 

(32, 4) 208.5 261.8 
(26) 0.97 1.42 

(46) 23.6 23.8 
(0.8) 

(32, 8) 223.4 257.8 
(15) 1.64 1.76 

(7.3) 25.9 26.3 
(1.5) 

 
From the table, we can see that when the number of blocks 

increases, the overhead in area and delay due to the sign bit error 
correction module also increases. The reason is that some sub-
modules in the sign bit error correction module, such as the 
circuits for the signals  and , have area and delay complexity 
proportional to the number of blocks. 

5.3 Performance Study on Edge Detection 
Application 

To evaluate the effect of our sign bit error correction module in 
real applications, we applied several approximate adders with and 
without the sign bit error correction module to an image 
processing application, namely Roberts cross-based edge 
detection [12]. We used peak signal-to-noise ratio (PSNR) of the 
image as the performance metric. It is defined as 

where  is the maximum possible pixel value of the image. 
 is the mean square error (MSE), which is defined as 

where  and  are the width and the height of an image, 
respectively. The values  and  are the results 
calculated by the accurate adder and the approximate adder, 
respectively, at location  in the image. For an accurate adder, 
its  and hence, its . The higher the PSNR is, 
the better the performance of the adder is. 

We used three existing approximate adders, ETAII, CSA, and 
LREA in our experiment. We applied these adders with and 
without the sign bit error correction module to perform edge 
detection on 10 sample images chosen from an online library [13]. 



Table 3 shows the average PSNR over the 10 images in our 
simulation. The adder parameter pairs (10, 2) and (10, 5) in the 
table have the same meaning as before. The pair (10, 3) refers to 
an adder with 4 blocks, of which the leftmost three are of size 3 
and the rightmost one is of size 1. Note that some entries in the 
table is  because the MSE is either zero or very small. From 
the table, we can see that the approximate adders with the error 
correction module are up to  better in PSNR than the original 
ones. 
Table 3. PSNRs of different approximate adders with and 
without the sign bit error correction module. 

Adder 
parameter 

ETAII CSA LREA 
basic sign basic sign basic sign 

(10, 2) 9.34 28.2 7.95 33.8 9.88 42.7 
(10, 3) 11.0 31.7 13.3 42.6 9.83 54.5 
(10, 5)     17.8  

 
To visually demonstrate the effectiveness of our proposed 

module, we show one sample image processed by the accurate 
adder and the LREAs with and without the sign bit error 
correction module for  and  in Fig. 9. 

       
              (a) Input image                         (b) Accurate adder 

       
(c) k=2, no correction module   (d) k=2, with correction module 

       
(e) k=3, no correction module    (f) k=3, with correction module 

       
(g) k=5, no correction module    (h) k=5, with correction module 

Fig. 9: Roberts cross-based edge detection using different 
adders. 

From Fig. 9, we can clearly see that the approximate adders 
with our sign bit error correction module have much better 
performance than those adders without the correction module. 

Finally, we did another comparison between two approximate 
adders. One is an LREA with  and no sign bit 
error correction module. The other is an LREA with 

 and the sign bit error correction module. The comparison 
of their PSNRs, areas, delays, and power consumptions is shown 
in Table 4. 

Table 4. Comparison of two approximate adders. 

 PSNR Area 
) 

Delay 
(ns) 

Power 
(mW) 

LREA (10, 5), basic 17.8 76.3 1.40 19.0 
LREA (10, 2), sign 42.7 85.3 1.01 18.2 

 
From the table, we can see that the LREA with  

and the sign bit error correction module is 12% larger in area than 
the LREA with  and no sign bit error correction 
module. However, the delay and the power consumption of the 
former are 28% and 4.2% smaller than those of the latter, 
respectively. Furthermore, the PSNR of the former is 140% better 
than that of the latter. This result shows that in the case where the 
circuit area, delay, and power consumption are comparable, an 
approximate adder with the proposed sign bit error correction 
module is much better in PSNR than an approximate adder 
without the correction module. 

6. CONCLUSION 
In this paper, we proposed a general sign bit error correction 

scheme, which is applicable to many block-based approximate 
adders. The only requirement our scheme relies on is that each 
sub-adder in the approximate adder is correct, which is usually 
held. Our design is very efficient with low area, delay, and energy 
overhead. According to the properties of each specific 
approximate adder, the proposed design may be further simplified. 
The proposed module not only can correct the sign bit error when 
it occurs, but also can fix some errors in the most significant bits 
even if there is no sign bit error. Thus, it can further reduce the 
relative error and error rate of the original approximate adder. We 
applied our proposed module to an edge detection application and 
demonstrated the good performance of it. 
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